Финансовая сфера

Банковское обозрение


  • Сustomer experience 2.0 — как финтех конвертирует речевые технологии в улыбки клиентов
12.07.2022 FinCorpFinRetailFinSecurityFinTechАналитика

Сustomer experience 2.0 — как финтех конвертирует речевые технологии в улыбки клиентов

Удовлетворить запросы клиентов ведущим финансовым институтам помогают технологии, машинное обучение. Группа ЦРТ реализовала более 5 тыс. AI-проектов по всему миру, в том числе — национального масштаба. Решения ЦРТ на основе речевых технологий, биометрии, голосовых и текстовых роботов используют крупнейшие банки России и СНГ. За последние полтора года группа ЦРТ показала лучшие результаты сразу в шести международных конкурсах. О том, как топовые строчки в международных бенчмарках и более 75 проектов внедрения речевых технологий в банках России и СНГ трансформируют финтех, о развитии речевых технологий и последних технологических трендах «Б.О» рассказал CEO группы компаний ЦРТ Дмитрий Дырмовский


Дмитрий Дырмовский. Фото: пресс-служба группы компаний ЦРТ

Дмитрий Дырмовский. Фото: пресс-служба группы компаний ЦРТ

— Дмитрий, для решения каких задач могут использоваться речевые технологии в банках?

— Текстовые и голосовые роботы помогают автоматизировать обслуживание, речевая аналитика — комплексно анализировать взаимодействие с клиентами, и дистанционное, и в офисах продаж. Речевая аналитика в финтехе — уже не тренд, а стандарт: она развивает сustomer experience — СХ, клиентский опыт. Для этого к речевой аналитике подключаются ML-модели, увеличивается количество параметров анализа (сегодня их более 50), появляется возможность анализа эмоций и даже эмодзи. Все это позволяет максимально детально разбирать семантику диалога, выясняя суть клиентских запросов.

Относительно новый сервис, развивающийся на базе речевых технологий, — «суфлер» оператора контактного центра, который становится полноценным элементом онлайн-аналитики: робот может в режиме реального времени подсказать, что именно говорить клиенту на следующем этапе воронки продаж, чтобы подтолкнуть его к совершению целевого действия. Виртуальный ассистент-суфлер может молниеносно исследовать цифровой ландшафт и предлагать гипотезы с учетом прошлого опыта общения, помогая в том числе учесть специфические желания клиента.

Проактивность в целом укрепляет тренд «предиктивной» аналитики: можно научить систему речевой аналитики прогнозировать темы запросов пользователей, а на основе популярных запросов строить прогнозы по потенциально востребованным сервисам, корректировать ценовую политику и т.п. Такое решение поможет уже не просто удовлетворять потребности клиентов, а предвосхищать их.

Масштабный тренд — омниканальность: независимо от того, в какой канал обратился клиент (сайт, мобильное приложение, мессенджер, колл-центр или точку продаж), важно получить сервис одного уровня, иметь возможность бесшовно продолжить диалог даже при смене канала коммуникации, а бизнес при этом должен получать агрегированную информацию о том, что говорят клиенты, кто они, каковы их желания. Этот тренд сформировал запрос на применение не отдельных речевых технологий в банках, а комплексных AI-платформ, где все технологии и продукты интегрированы, позволяют создавать масштабные кастомизированные решения enterprise-уровня.

— Чем речевые технологии могут быть интересны кредитно-финансовым организациям среднего и небольшого размера?

— Интересы крупных, средних и небольших финансовых организаций схожи: потребность автоматизации массовых сервисов, снижение доли рутинного труда операторов, а также потребность «слышать голос» клиента и совершенствовать сервисы, опираясь на обратную связь. Разница в том, что у средних и небольших организаций — запрос на простые, доступные решения, которые быстро и легко имплементировать. Группа ЦРТ предоставляет речевую аналитику on-prem — на защищенных серверах заказчиков — для взыскательных крупных банков, а для средних финансовых институтов есть возможность внедрить более простое и быстрое решение — в облаке. В обоих случаях важно выбирать проверенного вендора: критически важен опыт работы с персональными данными, опыт их деперсонализации и защиты.

— С чего должно начинаться внедрение речевых технологий в банке?

— В первую очередь — с понимания проблемы. Самые частые: снижение СSI (Customer Satisfaction Index) — индекса удовлетворенности клиента, FCR (First Call Resolution) — процента решенных задач при первом обращении клиента, отток постоянных клиентов. После осознания проблемы стоит выбрать вендора — поставщика технологии, продукта. Растущий мировой рынок речевых технологий спровоцировал переориентацию «непрофильных» разработчиков из других отраслей в попытке угнаться за трендом. Это приводит к внедрению непроверенных решений и как следствие распространяет ложноотрицательное мнение. К примеру, о диалоговых ассистентах: некачественный синтез робота, отсутствие реакции на перебивания лишь раздражают, а не помогают пользователю. Усугубляет проблему отсутствие стратегии — решение таких компаний создано «здесь и сейчас», их развитие завершается с закрытием контракта, отсутствие развития продукта приводит к новому негативу пользователей. Есть также случаи, когда разработчики пытаются выиграть контракт и за счет клиента создавать свой продукт. Выбор нового разработчика как попытка решить проблему приводит к конфликту имеющихся систем из-за отсутствия интеграции.

Отсюда следует сразу несколько выводов: стоит использовать решения «доверенных» разработчиков с технологиями, которые занимают топовые позиции в международных бенчмарках, с опытом работы в финтехе, стратегией развития продуктов — прозрачными roadmaps (дорожными картами), которые могут закрывать запросы комплексно, внедряя платформы с неконфликтующими решениями. Важно закладывать потенциал развития: техновизионеры понимают, куда движется рынок, могут предоставить выбор, например применение on-prem — в защищенной инфраструктуре заказчика или в облаке.

— В каком случае банкам стоит делать ставку на собственную разработку, а в каком искать партнеров на рынке?

— На собственную разработку можно делать ставку, если достаточно собственных данных, технологий и ресурсов. Если этого нет, имеет смысл обращаться к проверенным разработчикам. Даже с колоссальными инвестициями в in-house-разработку можно создать узкоспециализированное решение, в то время как ключевой тренд — комплексность и интегрированность, платформенные решения с целым спектром AI-решений. Очевидно, что догнать динамичный рынок и компании, которые лидируют в международных технологических конкурсах, будет непросто. Кроме технологий важен реальный опыт в проектах для крупного бизнеса: группа ЦРТ реализовала более 75 масштабных проектов на основе речевых технологий для ведущих банков России и СНГ: более 15 проектов по внедрению речевой аналитики, более 20 — текстовых или голосовых виртуальных ассистентов, более 20 — по записи, более 15 — по внедрению биометрии. И это только часть примеров.

— Каких результатов можно ожидать от партнерства? Как их оценивать?

— Главный результат — улыбки клиентов. Однако результаты легко оцифровать и традиционными финтех-метриками. К примеру, с внедрением речевой аналитики группы ЦРТ в Forte Bank только на старте проекта удалось увеличить количество анализируемых диалогов с 7 до 100%, снизить повторные обращения на 18%, а среднее время обслуживания — на 13%. Обеспечен рост соблюдения стандарта обслуживания в четыре раза.

Экономический эффект контактного центра Сбера от внедрения технологий с корпоративными клиентами с помощью речевой аналитики, разработанной группой ЦРТ, составил 129 млн рублей за 2021 год. В частности, речевая аналитика помогла банку увеличить долю согласий на подключение ряда продуктов до 45%.

В Московском кредитном банке (МКБ) выборочное прослушивание диалогов контролерами позволяло проверить всего около 2% звонков, а речевая аналитика ЦРТ автоматически анализирует до 100% обращений. Высвобождаемый ресурс контролеров направляется на проверку корректности и полноты предоставления финансовой информации клиенту.

Речевая аналитика группы ЦРТ помогла Райффайзенбанку подготовиться к росту обращений на горячую линию в начале пандемии: в первые дни всплеска заболеваемости были проанализированы самые популярные темы обращений и адаптированы ответы чат-бота для наиболее эффективной работы с входящими обращениями. Таким образом, в марте 2020 года каждое третье сообщение с участием чат-бота Райффайзенбанк смог закрыть полностью автоматически, без привлечения оператора.

— Какие факторы могут стать драйверами внедрения речевых технологий?

— Прежде всего — растущие требования клиентов к уровню сервиса, потребность в увеличении скорости работы с запросами и глубины консультаций, а также требования к бесшовному омниканальному обслуживанию. Современные технологии активно развиваются, и наша цель не просто удовлетворить потребности клиентов, а предвосхитить их.






Новости Релизы
Сейчас на главной

ПЕРЕЙТИ НА ГЛАВНУЮ